网站导航   4000-006-150  
小站教育
GMAT成绩单完美解读
学生选择在小站备考:30天 526181名,今日申请3764人    备考咨询 >>

GMAT数学解题应培养逆向思维 遭遇难题会有意外惊喜

2017年07月19日18:10 来源:小站整理
参与(0) 阅读(2816)
摘要:GMAT数学中不乏篇幅长正常解题步骤复杂的真题,而对付这类做起来耗时耗力的难题,其实从选项出发逆向解题反而常会有意外惊喜。因此,考生需要在GMAT数学的备考过程中培养逆向思维,本文将做具体分析。

下面是小站教育为大家带来的关于在GMAT数学考试中如何去转换思维的方法介绍,希望能对大家的GMAT数学考试有帮助。

GMAT数学解题应培养逆向思维 遭遇难题会有意外惊喜图1

很多时候,我们在思考某个问题时觉得事情应该是这样解决,但往往结果并非如我们所愿。而我们也逐渐发现许多问题这么思考已经解决不了,可是在这个情况下,大多数人没有怀疑自己多年的惯性是否不对,或至少没有怀疑过多年的惯性是否是唯一对的,而冠以自己没有努力,没有做许多题,没有经历许多事情,而去努力做题,努力工作,又由于努力一定比不努力强,从而在他努力获得一些提高后,就会反向说服他自己只要努力就行了。

但是少数人备战GMAT考试开始思考正向思维的对立面:逆向思维。所谓逆向思维,其实一点也不神秘,也就是不再追求非要从起点到终点,而是从终点反过来思考问题,或从对立面思考问题。我们来看看GMAT数学的习题

例:从1,2,4,6,8,10中任取若干个数,若取出的是一个数,取的是整数就是几,若取出不只一个数,就把取出的数相加求和,如若取2,4,就2+4=6,值为6。问这样取有多少个不同的值?

许多学生拿到题后,立刻想从总数中减去重复的,但发现重复的太多,不好计算,就没有思路了。这就是典型的从条件出发,从起点出发。但不是每个问题都适合这样思考,我们来看看若采取逆向思维的优势。

我们知道,最小值是1,最大值是全取,1+2+4+6+8+10=31,而我们发现2,4,6,8,10是最小的正偶数,它们的组合可以把31之内的所有偶数都取到,而偶数加1就是奇数,所以所有31之内的奇数也可以取到,因此1到31之间所有整数都可以取到,所以答案是31!

上述的GMAT考试技巧想必大家一定可以看到正向和逆向的区别。其实我们有许多事情都是这样的,本来不难的事情,被我们的思维的惯性的束缚,导致把事情变难了。举个简单例子,大家都知道在工作中老板是关心结果而不是关心过程,大家也都知道考试中的标准化考试是根据结果给分,而不是过程,但是在这个情况下,许多甚至大多数师生还都要求做题中追求过程的完美性。

以上就是我们小站教育为各位考生整理的关于GMAT数学考试中的思维转换介绍,希望考生积极做好备考工作,及时调整好状态,努力在GMAT数学考试中取理想的成绩!

特别申明:本文内容来源网络,版权归原作者所有,如有侵权请立即与我们联系contactus@zhan.com,我们将及时处理。

GMAT备考资料免费领取

免费领取
看完仍有疑问?想要更详细的答案?
备考问题一键咨询提分方案
获取专业解答

相关文章

GMAT数学速度正确率双保险 3个关键点彻底分析 GMAT数学低分原因精准分析 找到问题才能快速提分 【GMAT高分秘籍】考好数学必备4点心得分享 GMAT数学备考步骤解析 做到这8步就能考满分 警惕GMAT数学满分大敌 几何比较题常见做法分享 你是因为这些低级错误丢分的吗?GMAT数学扣分原因大盘点 GMAT数学高效复习技巧分享 学会这4招就能突破瓶颈 详解GMAT数学备考中不容忽视的2个重点要素

专题推荐

日排行
周排行
版权申明| 隐私保护| 意见反馈| 联系我们| 关于我们| 网站地图| 最新资讯
© 2011-2024 ZHAN.com All Rights Reserved. 沪ICP备13042692号-23 举报电话:4000-006-150
沪公网安备 31010602002658号
增值电信业务经营许可证:沪B2-20180682